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Abstract

Working with systems of partial differential equations (PDEs) is a fundamental
task in computational science. Well-posed systems are addressed by numerical
solvers or neural operators, whereas systems described by data are often addressed
by PINNs or Gaussian processes. In this work, we propose Boundary Ehrenpreis–
Palamodov Gaussian Processes (B-EPGPs), a novel probabilistic framework for
constructing GP priors that satisfy both general systems of linear PDEs with
constant coefficients and linear boundary conditions and can be conditioned on a
finite data set. We explicitly construct GP priors for representative PDE systems
with practical boundary conditions. Formal proofs of correctness are provided and
empirical results demonstrating significant accuracy and computational resource
improvements over state-of-the-art approaches.

1 Introduction

Classically, systems of partial differential equations (PDEs) have been solved using numerical
methods, which require the solution to be uniquely determined. This uniqueness is typically ensured
by prescribing a sufficient number of initial or boundary conditions. Neural operators adopt a
similar strategy, and learn the evolution of PDE solutions, mapping the system state at time t to the
state at time t + 1, given appropriate initial conditions. While such methods significantly reduce
computational cost, their accuracy falls short of that achieved by traditional numerical solvers.

A second line of research in machine learning abandons the requirement of uniqueness and instead
seeks a “good” approximate solution that fits observed data, i.e. regression inside of the solution set of
PDEs. This paper falls in this line of work. A prominent example is physics-informed neural networks
(PINNs) [65], which combine standard regression loss with an additional penalty for violating the
PDE at sampled points in the domain. Many Gaussian process (GP) models for linear PDEs also
follow this approach.

GPs [68] are a standard choice for functional priors, offering robust regression with few data points
and calibrated uncertainty estimates. Their bilinear covariance structure can encode linear properties,
such as derivatives [81, 33], enabling the construction of GPs whose realizations lie in the solution
set of linear PDEs with constant coefficients [46, 41, 58, 70, 84, 74, 40, 69], provided the system
is controllable, i.e., admits potentials. This construction, relying on Gröbner bases for multivariate
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polynomial rings, was extended beyond controllable systems [32]. These methods yield machine
learning models whose predictions are not merely physics-informed, but physics constrained: all
regression functions are exact solutions of the PDE system. As a result, they surpass PINNs in
accuracy by several orders of magnitude.

(a) t = 0.0 (b) t = 1.0 (c) t = 2.0 (d) t = 3.0 (e) t = 4.0

Figure 1: Consider the 2D wave equation ∂2
t u− ∂2

xu− ∂2
yu = 0 with zero boundary conditions on a

rectangular spatial domain. This figure shows a sample drawn from our B-EPGP construction. Every
sample analytically satisfies both the differential equation and the boundary conditions, and can be
conditioned on any finite set of observations.

In practice, PDE systems are typically accompanied by both data and (initial or) boundary conditions.
For controllable systems, such boundary conditions can be incorporated into GP models using
Gröbner bases over the Weyl algebra [47]. However, this approach does not extend to general linear
PDEs with constant coefficients. In this paper, we introduce an algorithmic construction of GP
priors—called Boundary Ehrenpreis–Palamodov Gaussian Processes (B-EPGPs)—that reside within
the solution space of any such system, including linear boundary conditions. B-EPGP builds on the
infinite-dimensional basis provided by the Ehrenpreis–Palamodov theorem and transforms it into a
basis of solutions that also satisfy the boundary conditions. Our main contributions are:

1. We present a general algorithmic construction of a novel model class: GP priors for solutions
of linear PDE systems with constant coefficients and linear boundary conditions.

2. We provide explicit constructions of such priors for several representative PDEs with
practical boundary setups.

3. We thoroughly prove correctness and convergence of our approach, in particular that these
GP priors have realizations that are dense in the PDE solution.

While our approach is mainly a regression model, we empirically demonstrate that it significantly
outperforms state-of-the-art neural operator models by orders of magnitude in accuracy and com-
putation time. Our approach scales mildly with the dimension, in particular we can handle the
3D wave equation (with 4 inputs) with minimal boundary data, avoiding the exponential boundary
discretization cost of traditional solvers.

2 Gaussian Process Priors from the Ehrenpreis–Palamodov Theorem

A key distinction between linear and nonlinear ODEs is that solutions to linear systems with constant
coefficients are linear combinations of exponential-polynomial functions. For example, the ODE
y′′′−3y′+2y = 0 has linear combinations of ex, xex, and e−2x as solutions, where the “frequencies”
1 and −2 are the roots of the characteristic polynomial z3 − 3z + 2 = (z − 1)2(z + 2).

Remarkably, this structure extends to systems of linear PDEs with constant coefficients. Consider
the 1D heat equation ∂1u− ∂2

2u = 0. Its exponential-polynomial solutions take the form ex1z1+x2z2 ,
where the frequency vector (z1, z2) satisfies the characteristic equation z1 − z22 = 0. This equation
arises substituting each derivative ∂i with a complex variable zi, akin to a Fourier transform. The
set of such z defines the characteristic variety, here given by V = {(z22 , z2) : z2 ∈ C}. We state the
special case of the Ehrenpreis–Palamodov theorem for irreducible characteristic varieties without
multiplicities. We refer to Appendix E for the general case, which involves linear combinations over
the components of the variety and correction terms (as the factor x in xex above) for multiplicities.
Theorem 2.1. Let Ω ⊂ Rn be an open convex set. Let A ∈ C[∂1, . . . , ∂n] and define the characteris-
tic variety V = {z ∈ Cn : A(z) = 0}. Suppose V is irreducible and has no multiplicities. Then, the
linear span of {ex·z}z∈V is dense in the space of smooth solutions of A(∂)u(x) = 0 on Ω.
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The solutions we construct are kerC∞(Ω) A = {u ∈ C∞(Ω): A(∂)u = 0} endowed with the classic
Fréchet topology. Until Appendix E, we assume the simplifying conditions of Theorem 2.1 hold.

[32] defined a Gaussian Process (GP) prior with realizations of the form f(x) =
∑r

j=1 wje
x·zj where

all “frequencies” zj lie in the complex variety V and wj ∼ N (0, σ2
j ). Local parametrization of V

enabled the use of SGD to optimize the zj and σ2
j . The method was dubbed EPGP1 and successfully

build probability distributions of PDE solutions from data at points, in some cases obtaining results
of several orders of magnitude better than state-of-the-art PINN methods.

This paper follows this general idea of a probabilistic model for solutions of PDE systems and
replaces the basis functions ex·zj from EPGP by new basis functions that satisfy boundary conditions.

3 EPGP for Boundary Value Problems

We introduce and demonstrate B-EPGP on realistic problems with boundary conditions. Additional
concrete examples can be found in Appendices H.1, H.2, H.3, J.1, J.3, K, L.2,L.1.
Remark 3.1. Boundary conditions can be incorporated into EPGP by conditioning the GP on data at
the boundary. Consider, for example, the initial-boundary value problem for the 1D heat equation:

∂tu− ∂2
xu = 0 in [0, 1]× [−2, 2]

u(0, x) = f(x) for x ∈ [−2, 2]

u(t,±2) = 0 for t ∈ [0, 1].

A direct EPGP implementation sets u(t, x) =
∑r

j=1 wje
z2
j t+zjx with zj ∈ C, and fits the initial and

boundary data at finite sets X ⊂ [−2, 2] and T ⊂ [0, 1]. We apply this approach to the 2D wave
equation in Section H.3. This method performs reasonably well in low dimensions, where boundaries
can be approximated with few data points. However, in higher dimensions, the curse of dimensionality
makes this approach highly inefficient, as gd−1 points are needed for a boundary in d-dimensional
space with a grid containing g points in each dimension. This corresponds to the typical curse of
dimensionality in numerical approximations. B-EPGP encodes the boundary condition directly into
the basis elements, avoiding the curse of dimensionality completely when encoding the boundary.
B-EPGP is not affected by the curse of dimensionality even for inhomogeneous boundary conditions,
see Appendix L.

3.1 B-EPGP: Bases satisfying boundary conditions in halfspaces

We begin our introduction of B-EPGP with the simplest class of boundaries: halfspaces. By a change
of variables, we may assume the domain is Ω = Rn

+ := Rn−1 × [0,∞). We will later generalize this
approach to more complex boundaries and provide corresponding examples.

Our goal is to construct GP priors whose realizations satisfy{
A(∂)u = 0 in Rn−1 × [ 0,∞)

B(∂)u = 0 on Rn−1 × {0}, (1)

where B ∈ C[∂]h×1 is a linear PDE operator representing the boundary condition. Starting from
Theorem 2.1, we consider realizations of the form f(x) =

∑r
j=1 wje

x·zj , which we aim to constrain
to satisfy both the PDE and the boundary condition exactly. In contrast, the baseline approach from
Remark 3.1 enforces the boundary condition only approximately and at a much higher cost. We stress
that we are interested in underdetermined systems (1), i.e., systems with many solutions. This means
that our method constructs probability distributions on infinite dimensional spaces – the kernels (1).

For x = (x′, xn) ∈ Rn−1 ×R, evaluating B(∂)f = 0 at xn = 0 yields
∑r

j=1 wjB(zj)e
x′·z′

j =

0 for all x′ ∈ Rn−1, where z′j denotes the first n− 1 components of zj . For this identity to hold, we
must have that z′j is constant with respect to j. Hence,

∑r
j=1 wjB(zj) = 0 for all x′ ∈ Rn−1. This

enables us to write an algorithm to construct basis elements for solutions of (1).

Let z′ ∈ Cn−1 be such that there exists zn ∈ C with (z′, zn) ∈ V , and define V ′ as the pro-
jection of the characteristic variety V onto Cn−1. For each z′ ∈ V ′, let Sz′ = {z ∈ V : z =

1[32] coined two terms, EPGP and S-EPGP; we will refer to either algorithm by EPGP.
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(z′, zn) for some zn ∈ C} denote the non-empty fiber over z′. These fibers can be computed using
Gröbner basis with negligible complexity in practice, see Appendix B. To ensure the boundary
condition is satisfied, we seek weights wz ∈ C such that∑

z∈Sz′
wzB(z) = 0. (2)

The admissible choices of wz form the left syzygy module of the vertically stacked matrices B(z)
for z ∈ Sz′ , which is again computable via Gröbner basis algorithms with negligible complexity, see
again Appendix B. For each z′ ∈ V ′, we obtain the basis{∑

z∈Sz′
wzB(z)ex·z :

∑
z∈Sz′

wzB(z) = 0

}
z′∈V ′

(3)

of terms for the frequency z′. We use a finite union of such basis vectors to perform linear regression
as in EPGP. The bases (3) can be computed explicitly by hand for the heat and wave equations with
either Dirichlet or Neumann boundary conditions.
Example 3.2 (Dirichlet boundary condition). If we set B = 1, we obtain

∑
wz = 0 in (2). This is a

broadly used condition with which we can solve explicitly. △
Example 3.3. Consider the 1D heat equation ∂tu − ∂2

xu = 0 with Dirichlet boundary condition,
B = 1 and u(t, 0) = 0. Start with z = (ζ2, ζ) ∈ V and note that z′ = ζ2, so that Sz′ = {±ζ}. We
conclude that in this case the basis elements are {etζ2+xζ − etζ

2−xζ}ζ∈C. △
Example 3.4. Similarly, for the 2D wave equation ∂2

t u− ∂2
xu− ∂2

yu = 0 with Dirichlet boundary
condition u(t, 0, y) = 0, we obtain the basis {e±

√
a2+b2t+ax+by − e±

√
a2+b2t−ax+by}a,b∈C. △

Example 3.5 (Neumann boundary condition). Another widely used boundary condition is Neumann,
i.e., B(z) = zn, which leads to

∑
wzzn = 0. Comparing to the previous examples, this leads

to the basis {etζ2+xζ + etζ
2−xζ}ζ∈C for 1D heat equation (Example 3.3) and {e

√
a2+b2t+ax±by +

e
√
a2+b2t+ax∓by}a,b∈C for 2D wave equation (Example 3.4). △

These calculations can be performed in arbitrary dimensions and for arbitrary hyperplanes, see
Appendix C. This basis replaces the basis of exponential functions in EPGP. Importantly, we can
prove that our method constructs approximations of all solutions to the boundary value problem:
Theorem 3.6. The linear span of (3) is dense in the space of all solutions of (1) for the heat or wave
equation and Dirichlet or Neumann boundary conditions.

We prove this in Appendix D, see Appendix E for details on the topology with respect to which we
have density. Relevant computational results are in Sections 5 and Appendices H, I.

3.2 B-EPGP with polygonal boundaries

B-EPGP handles polygonal boundary conditions given by k halfspaces Hi for 1 ≤ i ≤ k as follows.
We rephrase the computational steps from Section 3.1 in two parts, starting from a single EPGP basis
function eẑ·x with frequency ẑ ∈ V :

(i) Use the geometric arguments from above to collect all relevant frequency vectors in the fiber
Sẑ′ ∋ ẑ in the context of the single halfspace.

(ii) Determine all linear combinations of the basis functions ez·x for z ∈ Sẑ′ that satisfy the
boundary condition, using the syzygy computation explained above.

To extend this to polygonal boundaries, we refine step (i) as follows, while keeping step (ii) unchanged:

(i’) Initialize a singleton frequency set S = {ẑ}. Iteratively apply the construction from (i) to
z ∈ S and a halfspace Hi, and add any resulting frequencies to S. Repeat until S stabilizes,
i.e., no new frequencies are introduced for any combination z ∈ S and Hi, 1 ≤ i ≤ k.

These steps in (i’) do not terminate in general. We demonstrate how to still construct a basis with
non-termination in Example 3.8. In all remaining examples below, the computation terminates.
Example 3.7 (Wedge). We consider the 2D wave equation with Dirichlet boundary condition at x = 0
and Neumann boundary condition at y = 0:

utt − uxx − uyy = 0 (x, y) ∈ (0,∞)2, t > 0

u(0, y, t) = 0 y ∈ (0,∞), t > 0

uy(x, 0, t) = 0 x ∈ (0,∞), t > 0
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The EPGP basis for utt − uxx − uyy = 0 is given by {eαx+βy+τt : α, β, τ ∈ C, α2 + β2 = τ2}.
Performing the algorithm from the beginning of the section leads to the basis:

eαx+βy+τt − e−αx+βy+τt + eαx−βy+τt − e−αx−βy+τt,

which satisfies both boundary conditions at once. The calculation of the basis and an implementation
with a 45◦ wedge are described in Appendices J.2, J.3, respectively. △
Example 3.8 (Infinite slab). Consider the 1D wave equation on a line segment (0, π) with Dirichlet
boundary at both x = 0 and x = π,{

utt = uxx x ∈ (0, π), t ∈ R
u(0, t) = u(π, t) = 0 t ∈ R. (4)

An EPGP basis for this equation is e
√
−1ξ(x±t) for ξ ∈ R. Section 3.1 yields the basis e±

√
−1ξt sin(ξx)

that also adheres to the boundary condition at x = 0. Choosing ξ ∈ Z gives a basis which satisfies
the condition at x = π as well. Both the calculation of the basis, along the lines of Fourier series, and
an implementation are described in Appendix J.1. Even the following theorem holds. △

Theorem 3.9. B-EPGP gives {e
√
−1jx sin(jx)}j∈Z as basis with dense span in the solutions of (4).

Example 3.10 (Rectangle). The wave equation in a square with Dirichlet boundary conditions reads:{
utt − uxx − uyy = 0 for x, y ∈ (0, π), t > 0

u = 0 if x or y = 0 or π.
(5)

In a similar fashion to Example 3.8, B-EPGP can be used to arrive at the basis

e±
√
−1

√
j2+k2t sin(kx) sin(jy) for j, k ∈ Z. (6)

In this case we retrieve the method of separation of variables (a classic Fourier series approach). The
calculation of the basis and an implementation are described in Appendix H.1. △
Theorem 3.11. B-EPGP gives the basis (6) for (5). The span of (6) is dense in the solutions of (5).

In Theorem D.1 we give a general statement which incorporates both Theorems 3.9 and 3.11.

B-EPGP defines a valid GP and thus offers a fully probabilistic regression model. It not only
handles noisy data but also allows sampling from underdetermined PDEs–that is, systems with non-
unique solutions despite boundary conditions. In contrast, our previous examples were sufficiently
constrained to yield nearly unique solutions. B-EPGP can also be conditioned on arbitrary (noisy or
exact) observations. For example, consider the 2D wave equation with Dirichlet boundary conditions:{

utt − uxx − uyy = 0 for x, y > 0

u = 0 on x ∈ {0, 1} and y ∈ {0, 1}

Figure 1 shows snapshots of a random B-EPGP samples at five timepoints, illustrating its ability to
capture uncertainty from sparse data.

3.3 Hybrid B-EPGP

For domains with both flat and curved pieces of the boundary, we use B-EPGP to fulfill the linear
boundary conditions and the direct method from Remark 3.1 using data for the curved pieces.
Example 3.12 (Circular sector). Consider the space-time domain Ω = {(x, y, t) : x2 + y2 <
1, x > 0, y > 0, t > 0} which has the spatial boundary Γ = ([0, 1]× {0}) ∪ ({0} × [0, 1]) ∪
{(cos θ, sin θ) : θ ∈ [0, π/2]}. We consider the 2D wave equation in this circular sector,
utt − uxx − uyy = 0 in Ω with Dirichlet boundary condition u = 0 on Γ. To account for the
flat pieces of Γ, B-EPGP gives a basis similar to the one in Example 3.7, namely

eαx+βy+τt − e−αx+βy+τt − eαx−βy+τt + e−αx−βy+τt for α, β, τ ∈ C and α2 + β2 = τ2.

To account for the circular piece, we sample many points (cos θ, sin θ, t) and restrict our GP to satisfy
u = 0 at those points. For experiments, see Section 5.3. △
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4 Related ML Approaches to PDEs

The intersection of machine learning and PDEs has grown into a vibrant research field with a variety
of modeling paradigms. In this section, we survey classes of methods, including neural operators,
GPs, and hybrid models, placing our B-EPGP framework in context.

A dominant class of approaches uses neural networks either to approximate the solution directly or
as implicit function approximators. A foundational work in this domain is that of physics-informed
neural networks (PINNs) [65], which penalize deviation from the PDE operator in the loss function.
Variants and improvements of this idea abound, such as variational PINNs [43], Fourier PINNs [86],
and gradient-enhanced PINNs [87]. These approaches train neural networks to minimize the PDE
and approximate data at the same time. For a similar approach to GPs, see [14].

Physics-informed neural networks with hard constraints—often called Ansatz PINNs—enforce
boundary and initial conditions exactly by constructing a trial solution û = g + hNθ, where g
satisfies the prescribed conditions and h vanishes on the constraint sets [45]. Recent advances make
this strategy practical on complex geometries via smooth signed/approximate distance functions,
R-functions, and transfinite interpolation, enabling exact Dirichlet enforcement and robust handling
of mixed boundary types [79, 85]. Relative to penalty-based (“soft”) formulations, hard-constraint
designs reduce loss-weight tuning, improve optimization conditioning, and often train faster and more
stably, while remaining compatible with data terms and inverse problems [7, 5]. Extensions cover
Neumann/Robin conditions (via tailored derivative constraints or energetic forms), high-order PDEs
(first-order reformulations), and time-dependent problems (time-factorized ansätze), establishing
hard-constraint PINNs as a strong default when admissible trial spaces can be constructed [27, 15].
In contrast to these approaches, B-EPGP exactly satisfies both boundary conditions and the system
of PDEs.

Neural operators [44], such as DeepONets [57] and Fourier Neural Operators (FNOs) [55], represent
mappings between function spaces and are trained across families of PDEs. Most neural operators face
difficulties enforcing hard boundary constraints, especially in high-dimensional or complex geome-
tries. Recent contributions have tackled multi-scale problems [23] and high-frequency regimes [67].
Neural operators are connected to GPs [59] via linearization. The approaches [38, 64, 71, 88] improve
upon numerical PDE-solvers by casting them in a probabilistic framework.

GP models have been applied to both forward and inverse problems involving PDEs. Classical
works encode linear constraints through covariance functions [58, 74, 69]. Specifically, WIGPR [34]
considers the 3D wave equation. Later methods use symbolic tools to construct priors consistent with
linear PDEs [40, 46, 41]. Theoretical results underlying these approaches can be found in [35, 80]
and a related approach to neural networks in [37, 66]. Boundary conditions in GPs with differential
equations have been modeled via vertical scaling with polynomial [47] and analytic [48] functions. A
special case was later introduced as BCGP [18]. Well-posed boundary values problems where only
observations of the source term exist and no observations of the solution have been considered with
GPs using spectral expansions of covariance functions [30], including Lie symmetries [17]. EPGP
has recently been generalized to inverse problems [54].

There is an extensive treatment of Linear PDE coming from numerics and optimization, including
finite element methods [51, 56, 42, 11, 10], finite difference methods [21, 90, 49, 50, 83], and both
[16, 63, 2, 22]. We do not compare with them since they use deterministic models for well-posed
problems, while we construct probabilistic models for under-determined problems.

Physics informed machine learning models play an important role in ODE theory and control. [25]
constructs GP models for control for rigid body dynamics, while [8] constructs such models for
general linear ODE systems with constant coefficients, leading to control approaches [9, 82].

5 Experimental Comparison

B-EPGP is, as a GP, a probabilistic framework for describing the solution set of certain PDE systems.
Our Theorems and their proofs show that all realizations of B-EPGP are solutions and moreover that
realizations are dense in the set of solutions. To show the usefulness of these theoretical guarantees,
we repurposed the B-EPGP priors as solvers by conditioning on enough data. This allows to compare
B-EPGP to Neural Operators, the state-of-the-art in solving PDEs from initial values, and EPGP, the
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Table 1: The median L1 error in [0, 4] × [0, 8] for the experiment from Section 5.1 shows the
superiority of B-EPGP for different numbers of data points n.

Algorithm Absolute L1 Error Relative L1 Error
n = 121 n = 1201 n = 121 n = 1201

CNO 7.24e-3 1.05e-3 1.31% 0.79%
FNO 1.05e-2 3.13e-3 1.95% 1.17%
EPGP 2.36e-4 6.62e-5 0.52% 0.14%

B-EPGP (ours) 1.96e-4 3.41e-5 0.37% 0.06%
BCGP 3.32e-4 6.34e-5 0.62% 0.11%

WIGPR 5.12e-4 8.34e-5 0.86% 0.21%

state-of-the-art in probabilistic modeling of linear PDEs with constant coefficients. Results for further
examples and details can be found in Appendices H.1, H.2, H.3, I, J.1, J.3, K, L.1, L.2. These include
(i) details on the calculation of the B-EPGP basis and plots for solving the wave and heat equations
in several domains in App. H, J, K, (ii) comparison of our method with EPGP in App. I, (iii) an
extension of our method to include inhomogeneous systems A(∂)u = f and B(∂)u = g as opposed
to our homogeneous case study of (1) in App. L. We measure the accuracy of solutions in two ways:
(a) verify the accuracy of our solvers when we know the unique solution to the PDEs, (b) check the
conservation of energy, an important physical invariant, for the wave equation in bounded domains
[31]. See Appendix G for details. We refrain from checking the error of a solution in the PDE or
boundary condition as it unfairly favors B-EPGP, which satisfies them exactly. These experiments
also demonstrate that B-EPGP can be applied in practice under various circumstances.

5.1 Comparison to Neural Operators

We compare to the Convolutional Neural Operators (CNO) [67] and Fourier Neural Operators (FNO)
[55]. As experimental setting we use the 1D wave equation with Neumann boundary condition,

utt = uxx in (0,∞)× (0,∞)

u(0, x) = h1(x) and ut(0, x) = h2(x) for x ∈ [0,∞)

ux(t, 0) = 0 for t ∈ (0,∞)

where h1(x) = f(x − 3) + f(x + 3) + g(x − 1) + g(x + 1) and h2(x) = f ′(x − 3) − f ′(x + 3)

for f(x) = e−5x2

, g(x) = e−10x2

. We compare to the unique exact solution given by

f(x+ t− 3) + f(x− t+ 3) + 1
2 (g(x+ t− 1) + g(x− t− 1) + g(x+ t+ 1) + g(x− t+ 1))

Appendix C encodes the Neumann boundary into B-EPGP, leading to {eα(x±t) + eα(−x±t)}α∈C.
We consider both n = 121 and n = 1201 sample points from initial condition on the t = 0-interval
[0, 12], and for EPGP, CNO and FNO, we model the boundary at x = 0 by adding data at t = 0.2Z≥0

Table 1 shows that EPGP is between one and two orders of magnitude superior to the neural operator
methods, and B-EPGP improves upon EPGP, BCG, and WIGPR by factors of around 2. Experimental
details about the neural operator computations and ours can be found in Appendix M.1.

5.2 High-dimensional Example: 3D Wave Equation

The 3D wave equation is computationally challenging even without boundary conditions. In Ap-
pendix F, we adapt EPGP to fit both initial displacements and velocities. Here, we use B-EPGP with
Neumann boundary condition on the planes y = 0 and z = 0 and initial conditions as follows.

utt = uxx + uyy + uzz for x ∈ R, y, z, t > 0

u = e−5r21 + e−5r22 + e−5r23 and ut = 0 at t = 0

uy = 0 and uz = 0 at respectively y = 0 and z = 0

where r1, r2, r3 denote distances between (x, y, z) and (1, 1, 1), (1,−1, 1), (1, 1,−1), respectively.

The B-EPGP basis can be computed using the ideas in Section J.2 as

eax+by+cz+dt + eax−by+cz+dt + eax+by−cz+dt + eax−by−cz+dt

+ eax+by+cz−dt + eax−by+cz−dt + eax+by−cz−dt + eax−by−cz−dt for d2 = a2 + b2 + c2.
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(a) t = 0.0,
True solution

(b) t = 0.5,
True solution

(c) t = 1.0,
True solution

(d) t = 1.5,
True solution

(e) t = 2.0,
True solution

(f) t = 0.0,
Estimated solution

(g) t = 0.5,
Estimated solution

(h) t = 1.0,
Estimated solution

(i) t = 1.5,
Estimated solution

(j) t = 2.0,
Estimated solution

Figure 2: Visual comparison between the true solution and B-EPGP prediction for the 3D wave
equation from Section 5.2. The snapshots are taken in the plane y = 1.

Computation of solutions for PDE in 4D incurs a curse of dimensionality, hence few papers tackle
3D wave equation. For instance, EPGP runs out of memory on an Nvidia A100 80GB. Our B-EPGP
finishes with a low L1-error of 0.00088. For a comparison of other computation times of machine
learning models and finite element solvers, see Appendix A. These machine learning methods take
training times in the range of (at least) hours and might even need training data that needs to be
generated in the range of days or weeks. However, they have quick inference times (less than a
second). FEM solvers are very dependent on the precise circumstances of the setup, but for the above
examples usually take minutes (for limited accuracy) to hours. Training B-EPGP (determining the
frequencies) takes 2371 seconds, giving a full probabilistic model instead of “just” a single solution.
The training details are in Appendix M.2.

5.3 Hybrid B-EPGP in a circular sector

We also implement our Hybrid B-EPGP method from Section 3.3 for the 2D wave equation in a
circular sector, see Example 3.12. Let Ω = {x, y > 0, x2 + y2 ≤ 4}, t ∈ (0, 4). The equations are:

utt − (uxx + uyy) = 0 in (0, 4)× Ω

u(0, x, y) = f(x, y) and ut(0, x, y) = 0 in Ω

un = 0 on xy = 0

u = 0 on x2 + y2 = 4,

where f(x, y) = 5 exp(−10((x− 1)2 + (y− 1)2). In short, we set Dirichlet boundary conditions on
the arc and Neumann boundary conditions on the wedge xy = 0.

These boundary conditions on the flat and curved pieces of the boundary are dealt with separately in
our algorithm. To account for the Neumann boundary condition on {x = 0} and {y = 0} we use the
B-EPGP basis for a wedge

eat+bx+cy + eat−bx+cy + eat+bx−cy + eat−bx−cy for a2 = b2 + c2,

which can be calculated using the ideas of Appendix J.2. To account for the Dirichlet boundary
condition on the circular arc Γ = {x2 + y2 = 4, x, y > 0}, we assign data u(th, xh, yh) = 0 at
many points (th, xh, yh) ∈ Γ. We give the training details in Appendix M.3.

Snapshots of our solution are presented in Figure 4 and the conservation of energy is demonstrated
in Figure 3. We reiterate that the conservation of energy over time is equivalent to our prediction
satisfying both the equation and the boundary condition exactly, see Appendix G.
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Figure 3: In Section 5.3, EPGP dissipates energy for the 2D wave equation in a sector domain, which
is physically incorrect. B-EPGP only has an error due to approximating the energy integral. The
same phenomenon is observed for a rectangular domain in Appendix H.1.

(a) t = 0.0
EPGP

(b) t = 0.5
EPGP

(c) t = 1.0
EPGP

(d) t = 1.5
EPGP

(e) t = 2.0
EPGP

(f) t = 2.5
EPGP

(g) t = 3.0
EPGP

(h) t = 3.5
EPGP

(i) t = 4.0
EPGP

(j) t = 0.0
B-EPGP

(k) t = 0.5
B-EPGP

(l) t = 1.0
B-EPGP

(m) t = 1.5
B-EPGP

(n) t = 2.0
B-EPGP

(o) t = 2.5
B-EPGP

(p) t = 3.0
B-EPGP

(q) t = 3.5
B-EPGP

(r) t = 4.0
B-EPGP

Figure 4: Solution of 2D wave equation in a sector domain calculated using the Hybrid B-EPGP
method. The superiority of B-EPGP over EPGP is visually striking and is further evidenced
by the energy plot in Figure 3. Animations can be found in the supplementary material as
sector_B-EPGP.mp4 and sector_EPGP.mp4.

6 Summary

We introduced Boundary Ehrenpreis–Palamodov Gaussian Processes (B-EPGPs), a new framework
for constructing GP priors that exactly satisfy systems of linear PDEs with constant coefficients
and linear boundary conditions. Our approach generalizes existing methods by leveraging the
Ehrenpreis–Palamodov theorem and extending it to include boundary constraints through symbolic
algebra and Fourier analysis. Our priors are probability measures on infinite dimensional spaces, the
solution sets of our underdetermined PDEs. We provided formal guarantees, explicit constructions,
and demonstrated superior empirical performance over state-of-the-art neural operator models and
Gaussian process models in both accuracy (by at least a factor of 2) and efficiency (by at least an
order of magnitude). Our experiments are implemented in a broad class of domains which includes
polygonal and curved boundaries. We do not compare with deterministic numerical solvers as our
model is probabilistic.
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7 Reproducibility statement

We include our source code and videos of PDE solutions in the supplementary materials.

The comparison to neural operators on the 1D wave equation from Section 5.1 is described in detail
in Appendix M.1. The high-dimensional example on 3D wave equation from Section 5.2 is described
in detail in Appendix M.2. The hybrid B-EPGP example on the 2D wave equation that has a circular
sector domain from Section 5.3 is described in detail in Appendix M.3

The free wave example from Appendix F is described in detail in Appendix M.4. The examples of
2D wave on a different bounded domain from Appendix H and Appendix J are described in detail in
Appendix M.5 The comparison between B-EPGP and EPGP on the 2D wave equation from Section I
is described in detail in Appendix M.6. The example of 2D heat equation from Appendix K is
described in detail in Appendix M.7. The examples of inhomogeneous boundary condition from
Appendix L are described in detail in Appendix M.8.

8 Ethics statement

Our method constructs machine learning models constrained to physical equations. While potentially
harmful use cases of our models cannot be ruled out, we do not believe that our work currently raises
any questions regarding the Code of Ethics.
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A State of the art: machine learning for the 3D wave equation

Many recent related papers either do not tackle wave equations with boundary conditions [36] or
do not tackle PDEs in 4D [67]. However, few papers using PINN training and neural operator
learning scale to 3D wave physics (time domain and frequency domain), despite the necessity of high
computational times. B-EPGP avoids this high computational times.

Neural operators fall into two dominant families. (i) Neural operators (time domain) learn solution
operators for the elastic wave PDE from 3D media and source parameters to surface or volumetric
wavefields. Architectures include Fourier/Factorized Fourier Neural Operators (FNO/F-FNO) and the
U-shaped Neural Operator (UNO). They deliver fast surrogates once trained and generalize across
media and sources [52, 53]. (ii) Frequency-domain operator learning replaces the time-domain PDE
with the 3D Helmholtz equation; the Helmholtz Neural Operator (HNO) amortizes many forward
solves (and even adjoint gradients) across frequencies and media with large speed/memory advantages
[89].

For 3D acoustics (Helmholtz), forward PINNs reach FEM-level fields on evaluation grids [73, 72]
and report wall-clock comparisons and inference times orders of magnitude below FEM once trained.
These studies target low to mid frequencies in room-sized domains, and use DeepXDE/JAX/PyTorch
backends with residual and boundary-loss terms.

Neural operators typically require hours to tens of hours of multi-GPU training on large synthetic
corpora. Generating these synthetic corpora is also highly time intensive. After training, they
evaluate in milliseconds to sub-second per case; e.g., a 3D UNO/FNO trained on 30k SEM3D
simulations (surface traces) took 11 h on 4×A100 for 110 epochs (87M parameters) [52]. Frequency-
domain HNO reports ∼100× faster forward modeling than a spectral-element baseline and ∼350×
speedup for inversion, while using ∼40× less memory than an equivalent time-domain operator [89].
3D Helmholtz PINNs report setup times of “a few hours,” training 38–42.8 h, FEM baselines of
17–19 min, and PINN inference ≈ 0.05 s (>20,000× faster than FEM at inference) [73].

B Gröbner bases

Gröbner bases are a fundamental tool from computational algebra that generalize well-known
algorithms in linear algebra and number theory to the setting of multivariate polynomial rings. This
section provides an intuitive overview, with a focus on syzygies and how they are used in our
construction of boundary-constrained Gaussian processes.

B.1 Gröbner Bases

Gröbner bases extend the idea of the Gaussian elimination algorithm, which solves linear systems, to
polynomial systems in several variables. Similarly, they generalize the Euclidean algorithm from
univariate polynomials to multivariate settings.

Given a system of polynomial equations with multiple variables, solving or simplifying the system
directly is difficult because polynomial rings in several variables are not principal ideal domains.
Gröbner bases provide a canonical, algorithmically computable generating set for an ideal of polyno-
mials that simplifies many tasks: solving systems, ideal membership testing, elimination of variables,
and finding relations among polynomials.

The key idea is to choose a monomial ordering (such as lexicographic or graded reverse lexicographic
order), and then reduce polynomials using a division algorithm adapted to this ordering. A Gröbner
basis allows such reductions to behave predictably and mimic row operations in linear algebra.

A fully formal description of Gröbner bases exceeds the scope of this appendix. We refer to the
literature for the fully story [78, 20, 1, 29, 26, 13]. Various computer algebra systems implement
Gröbner bases, most famously the open source systems Singular [19] and Macaulay2 [28].

B.2 complexity

Sadly, the complexity of Gröbner bases is in the vicinity of EXPSPACE completeness (cf. [60, 61, 6,
62]). Luckily, the “average interesting example” usually terminates instantaneously (less than 0.01
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seconds for all examples in this paper), and we could even compute all examples in this paper by
hand.

This quick termination is to be expected. Although Gröbner-basis computation has this daunting
worst-case bounds, modern algorithms (notably F4/F5) reduce it largely to structured linear algebra
on Macaulay-type matrices; on many non-adversarial inputs this step is fast and rarely the overall
bottleneck. F4 explicitly organizes reductions as batched Gaussian eliminations, making the cost
dominated by dense linear algebra rather than term-by-term reductions [24]. Under generic or
semi-regular assumptions, the F5 analysis predicts complexity governed by the degree of regularity,
again pointing to linear-algebra–dominated runtimes [4]. In structured tasks such as computing
critical points of polynomial maps, generic bounds show that the Gröbner step is tractable (e.g.,
DO(n)), with experiments confirming that it typically behaves well in practice [75]. Worst-case
phenomena remain (e.g., dimension-dependent double-exponential behavior), but these arise from
carefully engineered instances rather than typical geometric or applied systems [62]. Many geometric
and differential-algebraic systems carry symmetries—permutation actions, torus multigradings, or
representation-theoretic structure—that dramatically shrink Gröbner computations. For permutation-
invariant ideals one can work in the invariant subring or fold equivalent S-pairs, collapsing critical
pairs and Macaulay matrices [76]. Equivariant Gröbner bases compute a finite basis up to symmetry,
solving all finite quotients at once [39]. In toric/sparse settings, Gröbner theory aligns with polyhedral
combinatorics; suitable weights give squarefree initial ideals and compact universal bases [77].
Classical GL-invariant families such as determinantal ideals admit symmetry-compatible orders for
which the natural generators already form Gröbner bases [12].

In our case, this reduction in complexitiy holds in particular since the Gröbner basis computations
only involve the (small) operator equations. They do not have the (potentially big) data as inputs.

B.3 fibres

Let V ⊂ Cn be given by an ideal I ⊂ C[z′, zn] with z′ = (z1, . . . , zn−1), and let π : V → Cn−1 be
the projection (z′, zn) 7→ z′. Following [3], the fibres

Sz′ = {(z′, zn) ∈ V }

can be obtained by a single Gröbner basis computation and then inexpensive specializa-
tions. In typical use, once the Gröbner basis is computed, finding the fibre over any con-
crete z′ amounts to solving a small zero-dimensional system—fast and routine in computer
algebra systems. For implementations of this and a similar algorithm we refer to the com-
mand ConstructibleImage in https://homalg-project.github.io/CategoricalTowers/
ZariskiFrames/ and to https://github.com/coreysharris/TotalImage.

B.4 Syzygies

In linear algebra, a syzygy is simply a relation among vectors that leads to a zero vector when linearly
combined, i.e. an element of the kernel of a matrix with these vectors as columns. These syzygies
form a vector space.

In the more general context of polynomial systems, syzygies are relations among (vectors of)
polynomials that annihilate a given combination. More precisely, given a tuple of (vectors of)
polynomials f1, . . . , fm, a syzygy is a tuple of polynomials (g1, . . . , gm) such that

∑
i gifi = 0. The

set of all such relations forms a module over the polynomial ring, called the syzygy module.

Computing a basis of this module is analogous to solving a homogeneous system of linear equations,
but over a multivariate polynomial ring2. Instead of using the Gaussian algorithm to compute a basis,
one uses Buchberger’s algorithm to compute a Gröbner basis. Then, one can (in a non-trivial way
called Schreyer’s algorithm) read of the syzygies.

B.5 Syzygies for B-EPGP

In our construction of boundary-constrained Ehrenpreis–Palamodov Gaussian processes (B-EPGP),
we seek linear combinations of exponential-polynomial functions that satisfy both the differential

2This is very explicitly written in the formulas (7) and (8).
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equation and the boundary conditions exactly. These basis functions are of the form ez·x, where z
lies in the characteristic variety associated with the PDE system.

The boundary condition introduces additional linear constraints on these exponentials. Specifically,
for a fixed fiber of frequencies Sz′ (i.e., a set of vectors z sharing the same spatial components), we
need to find coefficients wz such that a linear combination

∑
z∈Sz′

wzB(z) vanishes, where B(z)

represents the boundary operator evaluated at z.

This is precisely a syzygy computation: we seek all tuples (wz)z∈Sz′ such that a symbolic linear
combination of the boundary terms gives zero. These syzygies are computed by standard Gröbner
basis algorithms, and the resulting linear combinations form the building blocks for our B-EPGP
basis functions.

We comment on the role of the frequency vectors z in this computation. For each fixed Sz′ , the
values z ∈ Sz′ are concrete complex numbers and the B(z) are concrete complex vectors. Hence,
the wz for these concrete numbers might be computed by a Gaussian algorithm. However, this
induces massively redundant computations of the Gaussian algorithm for each frequency vector in
each step of the training algorithm, including backpropagation through this computation. Hence, it is
advantageous to symbolically precompute the wz for symbolic z.

For a correct computation, we need to include the polynomial relations between the z ∈ Sz′ , i.e. that
they are distinct fibers of z′ of the map V → Cn−1. The Gröbner basis needs to be computed over
the residue class ring of the polynomial ring by these polynomial relations.

Gröbner bases and syzygies enable a symbolic guarantee that all samples from our Gaussian process
model satisfy the PDE system and the boundary conditions exactly, not just approximately. This
exactness is crucial in applications such as physics-informed modeling or solving ill-posed PDEs,
where small violations of boundary constraints can lead to qualitatively incorrect behavior.

C Calculation of B-EPGP basis for heat and wave equations

C.1 Dirichlet and Neumann conditions on halfspaces

We will look at systems {
A(∂)u = 0 in Rn

+

B(∂)u = 0 on Rn−1

where the boundary conditions are Dirichlet (B = 1) or Neumann (B = ∂n). These are some of the
most common boundary conditions used in PDE. As in the body of our paper, A will be assumed to
be a single equation and u a scalar field (in Appendix E we will explain the extension to systems and
vector fields). By an affine change of variable, Rn

+ can be replaced with any other halfspace.

Inspired by the Ehrenpreis–Palamodov Theorem 2.1, we will investigate linear combinations of
exponential solutions

u(x) =

M∑
j=1

wje
x·zj

which satisfy A(∂)u = 0 if
M∑
j=1

wjA(zj)e
x·zj = 0,

which implies A(zj) = 0. This gives our first restriction zj ∈ V = {z ∈ Cn : A(z) = 0}, where V
is the characteristic variety of A. We proceed to incorporate the boundary condition as well. For this,
we write x = (x′, xn) and in general z′ is the projection of z ∈ Cn on Cn−1 and z = (z′, zn). We
get

M∑
j=1

wjB(zj)e
x′·z′

j = 0,
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which now does not imply B(zj) = 0 since some of the exponentials may be identical, i.e., some
zj ∈ V may have the same z′j . Therefore, for each unique z′J , we will have that∑

{j : z′
j=z′

J}

wjB(zj) = 0.

This motivates our definition of the boundary characteristic constructible set

V ′ = {ζ ∈ Cn−1 : ζ = z′ for some z ∈ V }.

Generically, this constructible set is a variety, which we then call boundary characteristic variety.
This gives the ansatz for the B-EPGP basis ∑

z∈V s.t. z′=ζ

wze
x·z :

∑
z∈V s.t. z′=ζ

wzB(z) = 0


ζ∈V ′

.

We simplify this explicitly for Dirichlet and Neumann boundary conditions, first Dirichlet: ∑
z∈V s.t. z′=ζ

wze
x·z :

∑
z∈V s.t. z′=ζ

wz = 0


ζ∈V ′

. (7)

and then Neumann  ∑
z∈V s.t. z′=ζ

wze
x·z :

∑
z∈V s.t. z′=ζ

wzzn = 0


ζ∈V ′

. (8)

We will calculate this explicitly for examples in the following.

C.2 Wave equation

We will calculate the B-EPGP bases for Dirichlet and Neumann for the 2D wave equation in
the domain y > 0. The calculations extend easily to arbitrary dimensions, but the formulas are
cumbersome and we do not include them here. Our calculations extend to all halfspaces parallel to
the t-axis by affine changes of variable. Considering boundary conditions on halfspaces that are not
parallel to the time axis, which would violate the physical meaning of initial and boundary conditions.

We start with Dirichlet conditions. To be specific we look at{
utt − (uxx + uyy) = 0 in {(t, x, y) : y > 0}
u = 0 at (t, x, 0).

In this case,
V = {(a, b, c) ∈ C3 : a2 = b2 + c2},

so a = ±
√
b2 + c2, meaning a can be any complex root of z2 − (b2 + c2) = 0. In this case it we

have that
V ′ = C2,

since for any (a, b) ∈ C2 there is at least one (and generically two) c ∈ C such that (a, b, c) ∈ V .

We proceed with computing the basis for Dirichlet boundary conditions, so we substitute in (7) to
get that for any a, b ∈ C, the vectors (a, b, c) ∈ V are given by c = ±

√
a2 − b2, so if we write

z± = (a, b,±
√
a2 − b2), the relations in (7) are

wz+ + wz− = 0 =⇒ wz− = −wz+ ,

which leads to the basis

{eat+bx+
√
a2−b2y − eat+bx−

√
a2−b2y}a,b∈C.

This can be rearranged as

{e±
√
a2+b2t+ax+by − e±

√
a2+b2t+ax−by}a,b∈C,
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which is what we have in Example 3.4.

In the case of Neumann boundary conditions, the calculation is similar. Using the same notation for
z± as above, we get from (8) that

cwz+ − cwz− = 0 =⇒ wz− = wz+ ,

which leads to the basis

{eat+bx+
√
a2−b2y + eat+bx−

√
a2−b2y}a,b∈C.

This can be rearranged as

{e±
√
a2+b2t+ax+by + e±

√
a2+b2t+ax−by}a,b∈C,

which is what we have in Example 3.5.

C.3 Heat equation

We will proceed similarly to the previous subsection. The same considerations concerning higher
dimensions and choosing various halfspaces apply. We look at{

ut − (uxx + uyy) = 0 in {(t, x, y) : y > 0}
u = 0 at (t, x, 0).

In this case,
V = {(a, b, c) ∈ C3 : a = b2 + c2},

so a = b2 + c2. In this case it we have that

V ′ = C2,

since for any (a, b) ∈ C2 there is at least one (and generically two) c ∈ C such that (a, b, c) ∈ V .

We proceed with computing the basis for Dirichlet boundary conditions, so we substitute in (7) to
get that for any a, b ∈ C, the vectors (a, b, c) ∈ V are given by c = ±

√
a− b2, so if we write

z± = (a, b,±
√
a− b2), the relations in (7) are

wz+ + wz− = 0 =⇒ wz− = −wz+ ,

which leads to the basis

{eat+bx+
√
a−b2y − eat+bx−

√
a−b2y}a,b∈C.

This can be rearranged as

{e(a
2+b2)t+ax+by − e(a

2+b2)t+ax−by}a,b∈C,

which is slightly more general than what we have in Example 3.3.

In the case of Neumann boundary conditions, the calculation is similar. Using the same notation for
z± as above, we get from (8) that

cwz+ − cwz− = 0 =⇒ wz− = wz+ ,

which leads to the basis

{eat+bx+
√
a−b2y + eat+bx−

√
a−b2y}a,b∈C.

This can be rearranged as

{e(a
2+b2)t+ax+by + e(a

2+b2)t+ax−by}a,b∈C,

which is slightly more general than what we have in Example 3.5 for the 1D heat equation.

19



D Proof that B-EPGP gives all solutions for heat and wave equations

We will prove Theorem 3.6 which applies to heat ∂tu−∆u = 0 and wave equations ∂2
t u−∆u = 0

(here we use the notation ∆u = ∂2
x1

+ ∂2
x2

+ . . .+ ∂2
xn

for the Laplacian operator) and any halfspace
parallel to the time axis. Since the Laplacian operator is invariant under rotations, we can perform
an affine change of variable to reduce the boundary condition to the plane x1 = 0. Our proof below
stems from the fact that, in the case of both equations, given a solution in {x1 > 0} with Dirichlet
(resp. Neumann) boundary conditions on {x1 = 0}, its odd (resp. even) extension with respect to
{x1 = 0} will satisfy the same equation in full space.

We will only show the calculations in the case of the 2D wave equation with Dirichlet boundary
condition. Increasing the dimension barely changes the argument. The modification required to
deal with the heat equation is also minimal (one less integration by parts in time). To deal with the
Neumann boundary condition, one uses even extension instead of odd extension in the calculation.

Proof of Theorem 3.6. Writing □u = utt − uxx − uyy , we consider smooth solutions of{
□u = 0 for x > 0, y ∈ R, t > 0

u(t, 0, y) = 0 for y ∈ R, t > 0.

The main observation is that the odd extension (even for Neumann boundary condition) of u is a
solution in full space of the wave equation. Let

v(t, x, y) =

{
u(t, x, y) for x ≥ 0

−u(t,−x, y) for x < 0.

Clearly □v(t, x, y) = 0 for x ̸= 0. We still need to check that □v = 0 across x = 0, but since the
odd extension need not have two classical derivatives, we compute the distributional derivative across
x = 0. To see this let ϕ ∈ C∞

c ({t > 0}) be a test function. We write dV = dxdydt and integrate by
parts∫

v□ϕdV =

∫
x>0

u□ϕdV −
∫
x<0

u(t,−x, y)□ϕ(t, x, y)dV

= −
∫
x=0

uϕxdydt−
∫
x>0

utϕt − uxϕx − uyϕydV −
∫
x=0

uϕxdydt

+

∫
x<0

ut(t,−x, y)ϕt(t, x, y) + ux(t,−x, y)ϕx(t, x, y)− uy(t,−x, y)ϕy(t, x, y)dV

= −
∫
x=0

uxϕdydt+

∫
x>0

ϕ□udV +

∫
x=0

uxϕdydt+

∫
x<0

ϕ□udV = 0,

so indeed □v = 0 in full space. Since v is odd, we have

v(t, x, y) = 1
2v(t, x, y)−

1
2v(y,−x, y),

so for x > 0 we obtain

u(t, x, y) = 1
2u(t, x, y)−

1
2u(y,−x, y). (9)

By Ehrenpreis–Palamodov Theorem 2.1 we know that we can approximate

u(t, x, y) ≈
∑
j

cje
αjt+βjx+γjy

for some αj , βj , γj ∈ C with α2
j = β2

j + γ2
j . By (9), it follows that

u(t, x, y) ≈
∑
j

1
2cj(e

αjt+βjx+γjy − eαjt−βjx+γjy).

This is exactly the basis produced by our B-EPGP algorithm, see Example 3.4.

We next look at the heat and wave equation in rectangles and give a generalization of Theorems 3.9
and 3.11:
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Theorem D.1 (Heat and Wave in rectangles). Let A = ∂t −∆ or A = ∂2
ttu−∆u, Ω = [0, L1]×

[0, L2]× . . .× [0, Ln], and B be Dirichlet or Neumann boundary condition on ∂Ω× R. Consider
the equation {

Au = 0 in Ω× R
Bu = 0 on ∂Ω× R.

Then B-EPGP gives the basis with dense linear span

{e
√
−1htf(j1x1π/L1)f(j2x2π/L2) . . . f(jnxnπ/Ln) : j1, j2, . . . , jn ∈ Z},

where

• h = j21+j22+ . . .+j2n for heat equation and h = ±
√
j21 + j22 + . . .+ j2n for wave equation,

• f = sin for Dirichlet boundary condition and f = cos for Neumann boundary condition.

Proof. We will only cover the case of the wave equation with Dirichlet boundary conditions. We will
make some simplifications which do not restrict the idea of proof: we set n = 2 so u = u(t, x, y)
and L1 = L2 = . . . = Ln = π.

Let u be a solution of {
□u = 0 for x ∈ (0, π), y ∈ (0, π)

u = 0 for x or y = 0 or π.

We define the extension to x, y ∈ (0, 2π) by

v(t, x, y) =


u(t, x, y) x ∈ (0, π), y ∈ (0, π)

−u(t, x− π, y) x ∈ (π, 2π), y ∈ (0, π)

−u(t, x, y − π) x ∈ (0, π), y ∈ (π, 2π)

u(t, x− π, y − π) x ∈ (π, 2π), y ∈ (π, 2π).

We extend v by periodically in (x, y) with cell (0, 2π)2 to R1+2 without changing its name. We make
several observations:

• For each t, the function (x, y) 7→ v(t, x, y) is (0, 2π)2-periodic, therefore v has a Fourier
expansion

∑
j,k∈Z fj,k(t)e

i(jx+ky).

• For each (t, x), the function y 7→ v(t, x, y) is odd, therefore only the terms sin(ky) will
appear in the Fourier expansion.

• Similarly x 7→ v(t, x, y) is odd, so v has a Fourier expansion∑
j,k∈Z fj,k(t) sin(jx) sin(ky).

• v solves the equation in full space, □v = 0 in R1+2.

Only the last assertion is non-obvious and requires a careful distributional calculation as in the proof
of Theorem 3.6 above, taking ϕ ∈ C∞

c (R1+2) and showing that
∫
u□ϕdV = 0 by careful integration

by parts. We omit the details.

Finally, we plug in v =
∑

j,k∈Z fj,k(t) sin(jx) sin(ky) in the equation □v = 0 to obtain f ′′
j,k(t) +

(j2 + k2)fj,k(t) = 0, which is an ODE with linearly independent solutions e±
√
−1

√
j2+k2t. This

gives us the Fourier basis

e±
√
−1

√
j2+k2t sin(jx) sin(ky) for j, k ∈ Z,

which is the basis computed using B-EPGP in Example 3.10. This coincides with the separation of
variables method.

The same extension works for the heat equation with Dirichlet boundary condition. For the Neumann
boundary condition (for both equations), one removes the two “minus” signs in rows 2 and 3 of the
definition of v; its periodic extension is thus an even function. Higher dimensions take more effort to
set up v on 2n branches, but the idea is the same.
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E Ehrenpreis–Palamodov Theorem and EPGP

We will begin with a very precise version of the statement that exponential-polynomial solutions
are dense in the space of all solutions for a linear PDE system. For notational clarity, we write
C[∂] := C[∂1, . . . , ∂n], x = (x1, . . . , xn), and z = (z1, . . . , zn).

Theorem E.1. Let Ω ⊂ Rn be an open convex set. Let A = A(∂) ∈ C[∂]ℓ×k be an operator
matrix of a system of linear PDEs with constant coefficients and V = {z ∈ Cn : kerA(z) ̸= 0} its
characteristic variety. Then there exist a decomposition V =

⋃m
i=1 Vi into irreducible varieties Vi

and a set of vector polynomials in 2n variables called Noetherian multipliers {pi,j}j=1...ri,i=1,...m ⊂
C[x, z]k such that solutions of the form

N∑
h=1

m∑
i=1

ri∑
j=1

ci,j,hpi,j(x, zi,j,h)e
x·zi,j,h with zi,j,h ∈ Vi (EP)

are dense in the space of smooth solutions of A(∂)u(x) = 0 in Ω.

Next, we clarify the notion of smooth solution and the topology with respect to which we have density.
First, we write F = C∞(Ω) to be the space of smooth functions Ω → C. This is a Frechét space
under the standard topology induced by the semi-norms sa,b(u) = max|α|=a,x∈Ωb

|∂αu(x)|, where
Ωb ↑ Ω is an increasing sequence of compact sets which exhausts Ω. This is to say that a sequence
uq → u in F if sa,b(uq − u) → 0 for all a, b. Algebraically, Fk is a C[∂]-module under the action
of differentiation.

Our solution space is then
kerF A = {u ∈ Fk : A(∂)u = 0}.

Ehrenpreis–Palamodov Theorem states that each element u ∈ kerF A can be approximated by
uq → u in Fk with solutions uq of the form (EP).

The algorithm EPGP from [32] revolves around fitting coefficients ci,j,h and “frequencies” zi,j,h in
formula (EP). To simplify notation, we will simply write {b(x; z)}z∈V for the continuously indexed
basis that we are working with (exponential-polynomial solutions of A(∂)u = 0). Predictions are
written in the form

ϕ(x) =

N∑
j=1

cjb(x; zj). (10)

We will assume that our solution is given as data points yh ≈ u(xh) for h = 1, . . .M , where
N ≪ M . We write C = (cj) ∈ CN , Z = (zj) ∈ V N , X = (xh) ∈ RM , Y = (yh) ∈ CM .

We will model C ∼ N (0,Σ) as multivariate Gaussian distribution with covariance Σ = diag(σ2
j )

N
j=1.

We will also assume that the data has Gaussian noise, so Y − ϕ(X) ∼ N (0, σ2
0IM ). Writing

B = (b(xh; zj)) ∈ CM×N , we have that ϕ(X) = BC, so ϕ(X) ∼ N (0, BΣBT ). We write
σ2 = (σ2

j )
N
j=0 for the vector of parameters of the underlined distributions. The marginal log

likelihood for this model is maximized if the function

L(Z, σ2;X,Y ) =
1

σ2
0

(|Y |2 − Y HBA−1BHY ) + (M −N) log σ2
0 + log detΣ + log detA,

is minimized, where A = Nσ2
0Σ

−1 +BHB and H denotes the conjugate-transpose operation. We
then use stochastic gradient descent to minimize L(Z, σ2). Once we obtain Z, we plug in the explicit
formula for C = A−1BHY and use (10) as our prediction.

We use the same regression model in the present paper, by choosing b(x; z) according to the B-EPGP
base instead of the EPGP base.

F Free wave equation in 2D and 3D

In fact, our first improvement of EPGP is to update it to include initial velocity as well as initial
displacement. We will explain this for the example of the wave equation in arbitrary dimension n.
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Even without boundary conditions, this is an important example for which ongoing research is being
developed [36]. Writing □u = utt − ux1x1 − ux2x2 − . . .− uxnxn , the problem to consider is the
Free Wave Equation: 

□u = 0 in Rn ×(0,∞)

u(0, x) = f(x) for x ∈ Rn

ut(0, x) = g(x) for x ∈ Rn .

Vanilla EPGP only deals with the case g = 0. Our main observation is that if u is a GP solution with
covariance kernel k, then (u, ut) is a GP with covariance kernel[

k(x, t;x′, t′) ∂tk(x, t;x
′, t′)

∂t′k(x, t;x
′, t′) ∂2

tt′k(x, t;x
′, t′),

]
which we fit to data (u(0, X), ut(0, X)) = (f(X), g(X)). Mathematically, this is the same as
considering the PDE system 

□u = 0 in Rn ×(0,∞)

v − ut = 0 in Rn ×(0,∞)

u(0, x) = f(x) for x ∈ Rn

v(0, x) = g(x) for x ∈ Rn .

This can then be solved using Vanilla EPGP for A(u, v) = (□u, v − ut) with initial condition for
both u and v.

As an example, we will consider the 2D case,
utt = uxx + uyy in R2 ×(0,∞)

u(0, x, y) = f(x− 2) + f(y − 2) in R2

ut(0, x, y) = f ′(x− 2) + f ′(y − 2) in R2,

where f(x) = exp(−5x2) or f(x) = cos(5x). The true solution is given by u(t, x, y) = f(x+ t−
2) + f(y + t− 2) and our results can be found in Figure 5.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4

(f) t = 0 (g) t = 1 (h) t = 2 (i) t = 3 (j) t = 4

Figure 5: Solutions to the initial boundary value problem for the 2D wave equation (no boundary
conditions). Solution fits both initial condition and initial speed. This is a necessary improvement of
the EPGP algorithm from [32], which can produce non-physical solutions in certain cases. Animations
can be found in the supplementary material as free_velocity1.mp4 and free_velocity2.mp4.

G Check using conservation of energy

So far, we checked the accuracy of our results either by comparison with true solutions (wherever we
could construct them) or by comparison with other solvers. For certain equations, there is another
mathematical tool that we can use, namely conservation of energy:
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Theorem G.1. Let Ω ⊂ Rd be a convex, bounded, open set and consider a smooth solution
u ∈ C∞(Ω̄× [0,∞)) of the wave equation

□u = 0 in Ω× (0,∞).

Suppose that u satisfies Dirichlet or Neumann boundary conditions

u = 0 or
∂u

∂n
u = 0 for x ∈ ∂Ω.

Then the energy of the solution u

E(t) =

∫
Ω

∣∣∣∣∂u(x, t)∂t

∣∣∣∣2 + d∑
j=1

∫
Ω

∣∣∣∣∂u(x, t)∂xj

∣∣∣∣2 dx
is constant for all t ≥ 0.

Proof. We can see that

E(t) =

∫
Ω

u2
t + |∇u|2dx

Then we can integrate by parts to obtain

E′(t) =

∫
Ω

[2ututt + 2(∇u · ∇ut)] dx

=

∫
Ω

2ututtdx− 2

∫
Ω

(∆u)utdx+ 2

∫
∂Ω

ut
∂u

∂n
dS

=

∫
Ω

2ut(utt −∆u)dx+ 2

∫
∂Ω

ut
∂u

∂n
dS

= 2

∫
∂Ω

ut
∂u

∂n
dS.

For either Dirichlet or Neumann boundary condition, we have that∫
∂Ω

ut
∂u

∂n
dS = 0,

Therefore, E(t) is indeed constant.

In practice, we approximate E(t) a Riemann sum of step-size h. For instance, when d = 2 we take

Q(t) =
Area(Ω)

#(hZ)2 ∩ Ω

∑
(x,y)∈(hZ)2∩Ω

(u2
t + u2

x + u2
y)
∣∣
(x,y,t)

.

The quantity we implement in our code is

Q̃(hT ) =
∑

(x,y)∈(hZ)2∩Ω

(u2
t + u2

x + u2
y)
∣∣
(x,y,hT )

(11)

where T is the final time (t ∈ [0, T ]) and we choose h = 0.1.

H Wave equation in bounded domains

In this section we will provide numerical results for the 2-D wave equation in bounded domains,
meaning that we investigate utt − (uxx + uyy) = 0 in Ω × (0, T ) with Dirichlet or Neumann
boundary conditions on ∂Ω, where Ω ⊂ R2 will is a bounded open convex set. We will use both
EPGP (Remark 3.1) and B-EPGP methods and compare them.

We will check the validity of our results using the conservation of energy principle from Theorem G.1.
We will show that by using EPGP a non-negligible amount of energy is lost/dissipated. In fact, we
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can say more: We will solve initial boundary value problems with given initial condition and zero
initial speed, meaning that we will solve

utt − (uxx + uyy) = 0 in Ω× (0, T )

u(0, x, y) = f(x, y) at t = 0

ut(0, x, y) = 0 at t = 0

which is a well-posed problem under Dirichlet or Neumann boundary conditions. By Theorem G.1
we have

E(t) = E(0) =

∫
Ω

u2
t (0, x, y) + u2

x(0, x, y) + u2
y(0, x, y)dxdy =

∫
Ω

f2
x + f2

ydxdy.

Thus in our experiments we will compare the energy of the B-EPGP with the true value computed
from initial conditions above and also show its superiority over EPGP.

H.1 Rectangular domains

We first consider Ω = (0, 4)2 and t ∈ (0, 12) and look for the solution of the initial boundary value
problem 

utt − (uxx + uyy) = 0 for x, y ∈ (0, 4), t ∈ (0, 12)

u(0, x, y) = exp(−10((x− 1)2 + (y − 1)2)) for x, y ∈ (0, 4)

ut(0, x, y) = 0 for x, y ∈ (0, 4)

u(t, x, y) = 0 for x or y = 0 or 4.
We will give a shortcut to our B-EPGP algorithm for finding a basis. We consider H1 = {x = 0},
H2 = {y = 0}, H3 = {x = 4}, H4 = {y = 4} and let eat+bx+cy be a solution of the wave equation,
meaning that a2 = b2 + c2. We can calculate a basis for the wedge {x, y > 0}, see Appendix J.2,
which is

eat+bx+cy − eat−bx+cy − eat+bx−cy + eat−bx−cy

= eat(ebx+cy − e−bx+cy − ebx−cy + e−bx−cy)

= eat(ecy(ebx − e−bx)− e−cy(ebx − e−bx)

= 2
√
−1eat sin(bx)(ecy − e−cy)

= −4eat sin(bx) sin(cy)

Here we observe a shortcut: if we set b, c ∈ Z, we obtain a set of functions

{e±
π
√
−1
4

√
j2+k2t sin(π4 jx) sin(

π
4 ky)}j,k∈Z

which satisfy the boundary condition on H2 as well (see also Appendix J.1). That set of functions
has linear span which is dense in the set of all solutions to (12) by Theorem D.1.

Snapshots of our solution are presented in Figure 6 and the conservation of energy is demonstrated in
Figure 7.

H.2 Triangular domains

We next consider Ω = {(x, y) : 0 < y < x < 4} and t ∈ (0, 4) and look for the solution of the initial
boundary value problem

utt − (uxx + uyy) = 0 in Ω× (0, 4)

u(0, x, y) = exp(−10((x− 3)2 + (y − 3)2)) in Ω

ut(0, x, y) = 0 in Ω

u(t, x, y) = 0 for (x, y) ∈ ∂Ω

We will use the B-EPGP basis computed in Section H.1 and an odd reflection in the diagonal line
y = x which gives{

e±
π
√
−1
4

√
j2+k2t

[
sin(π4 jx) sin(

π
4 ky)− sin(π4 kx) sin(

π
4 jy)

]}
j,k∈Z

.

It is easy to see that this new basis satisfies the Dirichlet boundary condition on all three boundary
hyperplanes {x = 4}, {y = 0}, {x = y}. Snapshots of our solution are presented in Figure 8 and
the conservation of energy is demonstrated in Figure 9.
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(a) t = 0,
EPGP

(b) t = 1,
EPGP

(c) t = 2,
EPGP

(d) t = 3,
EPGP

(e) t = 4,
EPGP

(f) t = 5,
EPGP

(g) t = 6,
EPGP

(h) t = 7,
EPGP

(i) t = 8,
EPGP

(j) t = 0,
B-EPGP

(k) t = 1,
B-EPGP

(l) t = 2,
B-EPGP

(m) t = 3,
B-EPGP

(n) t = 4,
B-EPGP

(o) t = 5,
B-EPGP

(p) t = 6,
B-EPGP

(q) t = 7,
B-EPGP

(r) t = 8,
B-EPGP

Figure 6: Solution of 2D wave equation in a rectangular domain calculated using the EPGP and
B-EPGP methods. We use a Dirichlet boundary condition which is visible above from the fact that
the edges of our plots have the same color in all snapshots. The results of B-EPGP seem more
reasonable, as they are more stable and lack corrupting high frequencies. Animations can be found in
the supplementary material as rectangle_EPGP.mp4 and rectangle_B-EPGP.mp4.

Figure 7: This figure shows the energy conservation for the 2D wave equation in a rectangular domain.
We expect a constant value from physical principles. EPGP method incurs a non-negligible loss of
energy. The error in B-EPGP is partly due to our approximation of the energy integral in (11).

(a) t = 0.0
EPGP

(b) t = 0.5
EPGP

(c) t = 1.0
EPGP

(d) t = 1.5
EPGP

(e) t = 2.0
EPGP

(f) t = 2.5
EPGP

(g) t = 3.0
EPGP

(h) t = 3.5
EPGP

(i) t = 4.0
EPGP

(j) t = 0.0
B-EPGP

(k) t = 0.5
B-EPGP

(l) t = 1.0
B-EPGP

(m) t = 1.5
B-EPGP

(n) t = 2.0
B-EPGP

(o) t = 2.5
B-EPGP

(p) t = 3.0
B-EPGP

(q) t = 3.5
B-EPGP

(r) t = 4.0
B-EPGP

Figure 8: Solution of 2D wave equation in a triangular domain with Dirichlet boundary conditions
calculated using the EPGP and B-EPGP methods. Animations can be found in the supplementary
material as triangle_EPGP.mp4 and triangle_B-EPGP.mp4.

H.3 Circle: Drum membrane

Our methods extend to non polygonal domains. Here we consider the 2D wave equation in a disc
with Dirichlet boundary conditions, a classic model for circular drum membranes. We will consider
the spatial domain Ω = {(x, y) : x2 + y2 ≤ 16} and t ∈ (0, 7), and the equations

utt − (uxx + uyy) = 0 in (0, 7)× Ω

u(0, x, y) = exp(−10(x2 + y2)) in Ω

ut(0, x, y) = 0 in Ω

u(t, x, y) = 0 on (0, 7)× ∂Ω.
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Figure 9: This figure shows the of energy conservation for the 2D wave equation in a triangular
domain. We expect a constant value from physical principles. S-EPGP method incurs a non-negligible
loss of energy. The error in B-EPGP is partly due to our approximation of the energy integral in (11).

Here we cannot use B-EPGP for polygons or Hybrid B-EPGP since no piece of the boundary
of Ω is polygonal. Instead, we will use the following implementation of the baseline method
EPGP as described in Remark 3.1: We consider the EPGP basis for the 2D wave equation without
boundary conditions {e±

√
a2+b2t+ax+by}a,b∈C and model the Dirichlet boundary condition as data

u(xh, yh, th) = 0 for points (xh, yh, th) ∈ ∂Ω × (0, 7). We also give data points to represent the
initial conditions at t = 0 as in the rest of the paper.

Snapshots of our solution are presented in Figure 10 and the conservation of energy is demonstrated
in Figure 11.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4 (f) t = 5 (g) t = 6 (h) t = 7

Figure 10: Radially symmetric solution to 2D wave equation in a circular domain with Dirichlet
boundary conditions evaluated at 8 timepoints. The animation can be found in the supplementary
material as circle_EPGP.mp4.

Figure 11: This figure shows the energy conservation for the 2D wave equation in a circular domain.
We expect a constant value from physical principles. The error is partly due to our numerical
approximation of the energy integral in (11).
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Table 2: The results from Section I show the superiority of B-EPGP over EPGP when comparing
the median L1-difference to the exact solution and the computation time. We report the standard
deviation of ten repetitions.

Algorithm Abs Err(10−4) Rel Err(%) Time(s)
EPGP 4.26± 0.21 1.82± 0.09 6059

B-EPGP (ours) 0.48 ± 0.02 0.72 ± 0.03 804

I B-EPGP and EPGP on 2D Wave Equation

We compare B-EPGP and EPGP in-depth, discussing accuracy and computational resources. Consider
the following initial boundary value problem for the 2D wave equation in a halfspace x > 0:

utt = uxx + uyy for t ∈ (0,∞), x ∈ (0,∞), y ∈ R
u(0, x, y) = f(x, y) and ut(0, x, y) = 0 for x ∈ [0,∞), y ∈ R
ux(t, 0, y) = 0 for t ∈ (0,∞), y ∈ R

with initial condition f = f1 + f2 + f3 for ci = −5i2 + 20i− 10 and

fi(x, y) =J0(ci ·
√
((x− i)2 + (y − i)2)) + J0(ci ·

√
((x+ i)2 + (y − i)2)),

where J0 is the Bessel function of order 0. The unique exact solution is given by
u(t, x, y) = f1(x, y) cos(5t) + f2(x, y) cos(10t) + f3(x, y) cos(5t).

We can use B-EPGP to obtain the basis
eαx+βy+τt + e−αx+βy+τt + eαx+βy−τt + e−αx+βy−τt for α, β, τ ∈ C and α2 + β2 = τ2.

We fix the number of frequencies to be the same in both EPGP and B-EPGP. Hence, B-EPGP
requires only one-quarter as many trainable parameters as EPGP. Both methods model initial data
on a spatial grid of spacing 0.2. EPGP requires additional boundary data sampled on a grid, which
triples the number of data and increases the size of the covariance matrix by a factor of nine, leading
to substantially higher computational cost. A one-sided paired Wilcoxon signed-rank test over ten
repetitions, with the alternative hypothesis that the location shift is less than zero, yields a highly
significant p-value of 0.001 ≪ 0.05. Table 2 sums up the comparison, where B-EPGP reduces
prediction error, runtime, and memory usage by an order of magnitude. Figure 13 describes how
EPGP and B-EPGP perform with different data size and basis elements. A visual comparison of the
two solutions can be seen in Figure 12.

(a) t = 0.0,
EPGP

(b) t = 0.5,
EPGP

(c) t = 1.0,
EPGP

(d) t = 1.5,
EPGP

(e) t = 2.0,
EPGP

(f) t = 2.5,
EPGP

(g) t = 3.0,
EPGP

(h) t = 3.5,
EPGP

(i) t = 4.0,
EPGP

(j) t = 0.0,
B-EPGP

(k) t = 0.5,
B-EPGP

(l) t = 1.0,
B-EPGP

(m) t = 1.5,
B-EPGP

(n) t = 2.0,
B-EPGP

(o) t = 2.5,
B-EPGP

(p) t = 3.0,
B-EPGP

(q) t = 3.5,
B-EPGP

(r) t = 4.0,
B-EPGP

Figure 12: Predictions to the 2D wave equation from Section I using EPGP and B-EPGP. We use
this experiment as a benchmark as we can compare both predictions with a highly nontrivial exact
solution. Animations can be found in the supplementary material as halfplane_EPGP.mp4 and
halfplane_B-EPGP.mp4.

J B-EPGP bases for wave equation in intersections of two halfspaces

We will also analyze the next simplest case which is more general than halfspaces (Appendix C),
namely intersections of two halfspaces. These, have only two relative positions, parallel or not, in
which case we will distinguish between the case when the angle is acute or not.
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J.1 Parallel halfspaces: slabs

Consider the equation in Example 3.8, namely 1D wave equation in an interval:{
utt = uxx x ∈ (0, π), t ∈ R
u(0, t) = u(π, t) = 0 t ∈ R. (12)

We will show how to use our B-EPGP algorithm to calculate a basis. We consider H1 = {x = 0},
H2 = {x = π} and let eat+bx be a solution of the wave equation, meaning that a2 = b2, so we will
simply write a = ±b. We obtain eb(±t+x). Using Section C, this basis is extended to a basis which
satisfies the H1 condition by

eb(±t+x) − eb(±t−x) = e±bt(ebx − e−bx) = 2e±bt sinh(bx).

Here we observe a shortcut: if we set b ∈
√
−1Z, we obtain a set of functions {e±

√
−1jt sin(jx)}j∈Z

which satisfy the boundary condition on H2 as well. This set has linear span which is dense in the set
of all solutions to (12) by Theorem D.1.

A similar calculation gives the basis {e±
√
−1jt cos(jx)}j∈Z in the case of Neumann boundary

conditions ux = 0.

We present our solution to the initial boundary value problem (12) computed using the B-EPGP basis
above in Figure 14.

0

2

4

6

0 5000 10000 15000
Database Size

A
bs

ol
ut

e 
L1

 E
rr

or

Method

B−EPGP

EPGP

Absolute L1 Error vs Database Size (Normal Scale)

(a) t = 0.0

1e−04

1e−02

1e+00

0 5000 10000 15000
Database Size

A
bs

ol
ut

e 
L1

 E
rr

or
 (

lo
g 

sc
al

e)

Method

B−EPGP

EPGP

Absolute L1 Error vs Database Size (Log Scale)

(b) t = 0.1

0

2

4

6

8

250 500 750 1000
Number of Basis Elements

A
bs

ol
ut

e 
L1

 E
rr

or

Method

B−EPGP

EPGP

Absolute L1 Error vs Number of Basis Elements (Normal Scale)

(c) t = 0.2

1e−03

1e−01

1e+01

250 500 750 1000
Number of Basis Elements

A
bs

ol
ut

e 
L1

 E
rr

or
 (

lo
g 

sc
al

e)

Method

B−EPGP

EPGP

Absolute L1 Error vs Number of Basis Elements (Log Scale)

(d) t = 0.3

Figure 13: The relationship between the error and the data size / number of basis elements we use,
for both EPGP and B-EPGP, and both in normal scale and log scale
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(a) Dirichlet boundary condition (b) Neumann boundary condition

Figure 14: B-EPGP solution for 1D wave in an infinite slab with different boundary conditions. The
difference color is explained by the different reflections: For Dirichlet, a negative wave is reflected
(“hard boundary”) and for Neumann a positive wave is reflected (“soft boundary”). This behavior is
already readable from the bases calculated in Appendix J.1.

J.2 Large wedges

We will consider the case when the two halfspaces make an angle of 90◦ (see Example 3.7) and
calculate the basis for 

□u(x, y, t) = 0 (x, y) ∈ (0,∞)2

u(0, y, t) = 0 y ∈ (0,∞)

uy(x, 0, t) = 0 x ∈ (0,∞).

We will calculate our B-EPGP algorithm and show the calculations in some detail.

We notice that the boundary hyperplanes are H1 = {x = 0} and H2 = {y = 0}.

In Step (i), we begin with one exponential solution

eat+bx+cy with a2 = b2 + c2.

This is extended to a basis that satisfies the H1 condition by

eat+bx+cy − eat−bx+cy.

This follows from the calculations in Section C.2. Similarly, we extend to a basis that satisfies the H2

condition
eat+bx+cy + eat+bx−cy.

This gives us the intermediate “basis”, at the end of Step (ii),

{eat+bx+cy − eat−bx+cy, eat+bx+cy + eat+bx−cy : a2 + b2 = c2 }.

We proceed with Step (i’) and check the both boundary conditions. We notice that each type of basis
element satisfies exactly one of the two boundary conditions, so we must return to Step (ii).

To extend the term eat+bx+cy − eat−bx+cy (which satisfies the H1 condition) to satisfy the H2

condition, we use the same calculation as above to obtain

eat+bx+cy − eat−bx+cy + (eat+bx−cy − eat−bx−cy).

To extend the term eat+bx+cy + eat+bx−cy (which satisfies the H2 condition) to satisfy the H1

condition, we get
eat+bx+cy + eat+bx−cy − (eat−bx+cy + eat−bx−cy).

Coincidentally, both basis elements constructed above equal

eat+bx+cy − eat−bx+cy + eat+bx−cy − eat−bx−cy for a2 = b2 + c2, (13)

which can easily be seen to satisfy both boundary conditions. In particular, we obtain that the
algorithm terminates. Thus we obtained the basis claimed in Example 3.7.
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J.3 Small wedges

We will also consider and also implement the case of an acute wedge, e.g. Ω = {(x, y) : x > 0, y <
x} and t ∈ (0, 8). We will look at the 2D wave equation with Neumann boundary conditions

utt − (uxx + uyy) = 0 in Ω× (0, 8)

u(0, x, y) = exp(−10((x− 3)2 + (y − 1)2)) in Ω

ut(0, x, y) = 0 in Ω

un(t, x, y) = 0 on ∂Ω× (0, 8).

The B-EPGP basis can be computed along the same lines as the case of the right angle above.
However, the calculations are much more ample so we only state the result here:

ez1x+z2y+τt + e−z1x+z2y+τt + ez1x−z2y+τt + e−z1x−z2y+τt

+ ez2x+z1y+τt + e−z2x+z1y+τt + ez2x−z1y+τt + e−z2x−z1y+τt

+ ez1x+z2y−τt + e−z1x+z2y−τt + ez1x−z2y−τt + e−z1x−z2y−τt

+ ez2x+z1y−τt + e−z2x+z1y−τt + ez2x−z1y−τt + e−z2x−z1y−τt for τ2 = z21 + z22 .

We present our solution to the initial boundary value problem computed using the B-EPGP basis
above in Figure 15.

(a) t = 0.0 (b) t = 1.0 (c) t = 2.0 (d) t = 3.0 (e) t = 4.0 (f) t = 5.0 (g) t = 6.0 (h) t = 7.0 (i) t = 8.0

Figure 15: Solution of 2D wave equation in a 45◦ wedge domain evaluated at 9 timepoints. Since the
domain is unbounded, the wave leaves the domain in finite time. The animation can be found in the
suplementary material as wedge_B-EPGP.mp4.

K Heat equation in 2D

The examples we gave so far focused on wave equations, often in 2 space dimensions as these produce
the most visually striking videos and are better represented in the paper as snapshots at various times.
Our method extends equally well to equations for heat, which we will give an example of in this
section. We will consider a wedge domain and Neumann boundary conditions:

ut − (uxx + uyy) = 0 in (0, 4)× (0,∞)2

u(0, x, y) = 5 exp(−10((x− 1)2 + (y − 1)2)) in (0,∞)2

ux(t, 0, y) = 0 for t ∈ (0, 4), y ∈ (0,∞)

uy(t, x, 0) = 0 for t ∈ (0, 4), x ∈ (0,∞).

In this case, we can use the calculations in Section C.3 and J.2 to obtain the B-EPGP basis

e(a
2+b2)t+ax+by + e(a

2+b2)t−ax+by + e(a
2+b2)t+ax−by + e(a

2+b2)t−ax−by for a, b ∈ C.
For comparison, we will also consider the case of Dirichlet boundary conditions

ut − (uxx + uyy) = 0 in (0, 4)× (0,∞)2

u(0, x, y) = 5 exp(−10((x− 1)2 + (y − 1)2)) in (0,∞)2

u(t, 0, y) = 0 for t ∈ (0, 4), y ∈ (0,∞)

u(t, x, 0) = 0 for t ∈ (0, 4), x ∈ (0,∞),

for which we obtain the B-EPGP basis

e(a
2+b2)t+ax+by − e(a

2+b2)t−ax+by − e(a
2+b2)t+ax−by + e(a

2+b2)t−ax−by for a, b ∈ C.
In Figure 16 we will further compare these results visually with the solution of the heat equation in
full space {

ut − (uxx + uyy) = 0 in (0, 4)× R2

u(0, x, y) = 5 exp(−10((x− 1)2 + (y − 1)2)) in R2.
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L Inhomogeneous systems

Our method is easily extended to cover the case of inhomogeneous systems,{
A(∂)u = f in Rn−1 × [ 0,∞)

B(∂)u = g on Rn−1 × {0}, (14)

where f and g are given functions. We first make the observation that the difference between the
affine space in (14) and the linear space in (1) is only that of a particular solution up of (14):

{u : A(∂)u = f,B(∂)u = g} = up + {u : A(∂)u = 0, B(∂)u = 0}.
This is a very classic observation, almost as old as the study of partial differential equations. In
particular, given a particular solution up, defining probability measures on the space of solutions
to the inhomogeneous system (14) is equivalent to defining probability measures on the space of
solutions to the homogeneous system (1). The latter is the main achievement of B-EPGP.

This of course leaves open the issue of finding particular solutions up, which is not trivial, but can be
dealt with with various methods, including analytical methods and numerical solvers. We outline
a possible method here, which has a spectral flavor. Write x = (x′, xn), where x′ ∈ Rn−1 and
xn ∈ R. For simplicity of notation, we only consider the case of single equations, i.e., A ∈ R[∂],
B ∈ R[∂′]; the case of systems can be dealt with using pseudoinverses instead of division in the
algebraic calculation below. We expand f and g in exponential series,

f(x) ≈
M∑
j=1

wje
√
−1zj ·x, g(x′) ≈

M∑
j=1

w̃je
√
−1yj ·x′

,

with zj ∈ Rn and yj ∈ Rn−1. This can be done either with deterministic or probabilistic methods
for Fourier transforms.

We first set

u1(x) =

M∑
j=1

A(
√
−1zj)

−1wje
√
−1zj ·x,

(a) t = 0.0,
free

(b) t = 0.1,
free

(c) t = 0.2,
free

(d) t = 0.3,
free

(e) t = 0.4,
free

(f) t = 0.5,
free

(g) t = 0.0,
DBC

(h) t = 0.1,
DBC

(i) t = 0.2,
DBC

(j) t = 0.3,
DBC

(k) t = 0.4,
DBC

(l) t = 0.5,
DBC

(m) t = 0.0,
NBC

(n) t = 0.1,
NBC

(o) t = 0.2,
NBC

(p) t = 0.3,
NBC

(q) t = 0.4,
NBC

(r) t = 0.5,
NBC

Figure 16: Snapshots of our solution for 2D heat equation with different boundary condition at 6
timepoints. The effects of the boundary conditions are very clearly visible. Row 1, free heat equation
(no BC): heat diffuses exponentially in time. Row 2, Dirichlet BC: heat is maintained at 0 on the edges
x = 0 and y = 0 so heat is diffused faster. Row 3, Neumann BC: the edges x = 0 and y = 0 are
thermally insulated, so no heat is diffused there; hence heat is diffused slower, in directions of large
x, y. Animations can be found in the supplementary material as heat_free.mp4, heat_DBC.mp4,
and heat_NBC.mp4.
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which solves A(∂)u1 = f with no regard to the boundary conditions. We would next need to solve{
A(∂)u = 0 in Rn−1 × [ 0,∞)

B(∂)u = g −B(∂)u1 on Rn−1 × {0}.
We write out explicitly

g −B(∂)u1 =

M∑
j=1

w̃je
√
−1yj ·x′

−B(
√
−1z′j)A(

√
−1zj)

−1wje
√
−1z′

j ·x
′

We then find ỹj , z̃j ∈ C such that A(ỹj) = 0 = A(z̃j) and ỹ′j =
√
−1yj and z̃′j = z′j ; this is an

algebraic computation which can be performed in Macaulay2. Then set

u2(x) =

M∑
j=1

B(
√
−1ỹj)

−1w̃je
√
−1ỹj ·x −A(

√
−1zj)

−1wje
√
−1z̃j ·x

to obtain a solution to the system above. Therefore up = u1 + u2 will solve (14).

Notice that the complexity of the calculation described above is the same as the complexity of the
inputs f and g. The particular solution up is directly computed using the precomputed algebraic
varieties, as described above and in Appendix B (fibers of the characteristic variety of A). Therefore,
the cost of performing regression on the affine space (14) (inhomogeneous system) is the same as
performing regression for the linear space (1) (homogeneous system) plus the cost of discretizing the
inputs f and g; recall here that both systems are underdetermined. In this sense, B-EPGP does not
suffer from the curse of dimensionality.

We present an abridged version of this algorithm to use B-EPGP to generate solutions of (14).

1. Find a particular solution up of (14) using another method, e.g. the one described above;
2. Use B-EPGP to generate v such that A(∂)v = 0 and B(∂)v = 0;
3. Set u = v + up.

L.1 2D Wave Equation with Inhomogeneous Boundary

In this section, we demonstrate how to conduct the reduction described above in the case of the 2D
wave equation with inhomogeneous boundary condition. Let Ω = (0, 4)2. Here the inhomogeneous
system reads {

utt − (uxx + uyy) = 0 in (0, 8)× Ω

u(t, x, y) = f(t, x, y) on ∂Ω,
(15)

where we consider two cases. The first case f(t, x, y) = f1(t, x, y) = 0.1(x2 + y2 + 2t2) and the
second case f(t, x, y) = f2(t, x, y) = 0.5(x+ y).

We observe that up = f is a particular solution in both cases. We proceed with the homogeneous
system {

vtt − (vxx + vyy) = 0 in (0, 8)× Ω

v = 0 on ∂Ω.
(16)

We would like to infer this solution using B-EPGP from some data. In this case, we will assume this
data is sampled from some initial conditions,{

u(0, x, y) = 10 exp(−10((x− 2)2 + (y − 2)2)) in Ω

ut(0, x, y) = 0 in Ω,
(17)

which then give initial conditions for v{
v(0, x, y) = 10 exp(−10((x− 2)2 + (y − 2)2))− f(0, x, y) in Ω

vt(0, x, y) = −ft(0, x, y) in Ω.
(18)

We can now use B-EPGP to fit solutions of (16) to data sampled from (18) using the method described
in Appendix F. If v is our prediction, then u = up + v is the prediction for our solution of (15) with
data sampled from (17).

Snapshots of the solutions in both cases f = f1 and f = f2 are presented in Figure 17.
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Table 3: We demonstrate how good is our local approximation of a function that is not a global solution due to
a singularity at (0, 0). We use 10000 data points and n = 10 or n = 50 basis elements. We emphasize that the
error is really small, despite the distance between the domain and the singularity point being very small.

Domain Absolute L1 Error Relative L1 Error
n = 10 n = 50 n = 10 n = 50

[1, 10]2 0.00030 3.6e-6 0.00036 3.59e-5
[1, 100]2 0.00081 7.68e-5 0.00079 6.93e-5
[0.01, 1]2 0.00875 0.00085 0.00642 0.00063

L.2 Laplace Equation which has a singular point

We also give an example with inhomogeneous boundary condition for Laplace’s equation. In this
case, we use EPGP to fit the boundary condition and also notice that the application of B-EPGP for
the homogeneous system can only yield the zero solution.

By its very ansatz, EPGP produces global solutions, since each exponential-polynomial solution is a
solution in full space (see also Appendix E). Here we demonstrate that our methods can approximate
solutions on bounded domains Ω which cannot be extended to a global solution on Rn. This somewhat
surprising fact shows that B-EPGP approximates solutions locally very well.

Let Ω ⊂ R2 be such that 0 /∈ Ω̄. We consider the problem{
uxx + uyy = 0 in Ω

u = log (x2 + y2) for (x, y) ∈ ∂Ω.

For this boundary condition, there is no v satisfying vxx+vyy = 0 in R2 which satisfies the boundary
condition. This is due to the uniqueness properties of harmonic functions: any such v would have to
equal log(x2 + y2) for (x, y) ̸= (0, 0), which is not defined in (0, 0). This means that even though
log(x2+ y2) satisfies the PDE in R2 \{0} as well as the boundary condition, our approximation must
deteriorate as Ω is chosen closer to (0, 0).

In Table 3 we report on our results with various domains at various different distances from the
singularity (0, 0) and the results are very good even when the distance is only .01. Figure 18 shows
that the errors concentrate on the points that are nearer to the singularity of log(x2 + y2).

M Experimental Details

In this appendix we collect all training details pertaining to the implementation of B-EPGP for our
experiments, as well as for the algorithms we compare with (FNO, CNO, EPGP). All experiments
are performed on an A100 Nvdia GPU with 80GB RAM.

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3 (e) t = 4 (f) t = 5 (g) t = 6 (h) t = 7 (i) t = 8

(j) t = 0 (k) t = 1 (l) t = 2 (m) t = 3 (n) t = 4 (o) t = 5 (p) t = 6 (q) t = 7 (r) t = 8

Figure 17: Solutions to the initial boundary value problem for the 2D wave equation with inhomoge-
neous boundary conditions. Notice that the height of the wave around the boundary is increasing over
time. The boundary conditions in the first example are nonlinear. Animations can be found in the
supplementary material as 2Dwave_nonhomo1.mp4 and 2Dwave_nonhomo2.mp4.
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(a) n = 10
on [1, 10]2

(b) n = 50
on [1, 10]2

(c) n = 10
on [1, 100]2

(d) n = 50
on [1, 100]2

(e) n = 10
on [0.01, 1]2

(f) n = 50
on [0.01, 1]2

Figure 18: Error in our solution for Laplace’s Equation in Section L.2. The error concentrates near
the singularity at (0, 0) and shows a wave-like behavior, similar to Gibbs phenomenon.

M.1 1D wave experiment from Section 5.1

The neural operators were run on the reference code of the authors of [67] and [55] with their default
settings. The most important are a learning rate 0.001, 50 epochs, stepsize 15, a channel multiplier of
16, and input and output spatial size of 256.

For B-EPGP and EPGP, we have 1000 basis elements, whose prior is distributed as a N (0, I)
distribution, first train 10000 epochs with learning rate of 0.1, then 10000 epochs with learning rate
0.01, then 1000 with 0.001. All training data and evaluation data are sampled with equal distance,
while training data lies in the initial plane (and boundary if necessary), evaluation data lies in the
whole space.

M.2 3D wave experiment from Section 5.2

We chose the number of basis elements to be 500, whose prior is distributed as a N (0, I) distribution,
first trained 10000 epochs with learning rate of 0.1, then 10000 epochs with learning rate 0.01, then
1000 with 0.001.

M.3 2D wave with Hybrid Boundary experiment from Section 5.2

We chose the number of basis elements to be 1000, whose prior is distributed as a N (0, I) distribution,
first trained 10000 epochs with learning rate of 0.1, then 10000 epochs with learning rate 0.01, then
1000 with 0.001.

M.4 Free wave equation from Appendix F

We chose the number of basis elements to be 2000, whose prior is distributed as a N (0, I) distribution,
first trained 10000 epochs with learning rate of 0.1, then 10000 epochs with learning rate 0.01, then
1000 with 0.001.

M.5 2D wave with different domains from Appendices H and J

We chose the number of basis elements to be 1000, whose prior is distributed as a N (0, I) distribution,
first trained 10000 epochs with learning rate of 0.1, then 10000 epochs with learning rate 0.01, then
1000 with 0.001.

M.6 Comparison between B-EPGP and EPGP on 2D wave from Appendix I

For B-EPGP, we chose the number of basis elements to be 1000, whose prior is distributed as a
N (0, I) distribution, first trained 10000 epochs with learning rate of 0.1, then 10000 epochs with
learning rate 0.01, then 1000 with 0.001.

For EPGP, we chose the number of basis elements to be 2000, whose prior is distributed as a N (0, I)
distribution, first trained 10000 epochs with learning rate of 0.1, then 10000 epochs with learning
rate 0.01, then 1000 with 0.001.
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M.7 2D heat experiment from Appendix K

We chose the number of basis elements to be 1000, whose prior is distributed as a N (0, I) distribution,
first trained 10000 epochs with learning rate of 0.1, then 10000 epochs with learning rate 0.01, then
1000 with 0.001.

M.8 Inhomogeneous boundary experiment from Appendix L.1

When training the homogeneous system, we chose the number of basis elements to be 1000, whose
prior is distributed as a N (0, I) distribution, first trained 10000 epochs with learning rate of 0.1, then
10000 epochs with learning rate 0.01, then 1000 with 0.001.
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